歡迎來到全傑科技

今日訪客: 0
線上訪客:

本軟體最新開課活動

目前沒有相關活動!!!
本軟體之前的活動!!
本軟體有產品說明會, 請洽本公司!!

下載專區 Download

活動資訊

  • 目前尚無任何訓練課程!!

聯絡我們

姓名:
Email:
聯絡電話:
單位:
部門:
附件:
您的留言:

提供專業軟體代購服務
如有未列於網站之產品需求
歡迎來電洽詢,感謝您!
電話:(02)2507-8298

HLM 7
階層線性模型與非線性模型軟體
Hierarchical Linear Modeling
軟體代號:878
瀏覽次數:15271
Windows2000WindowsXPWindowsVISTAWindows7
多人版
教育版
商業版
再啟動服務
試用版
遠端展示
在地教學
遠端安裝啟動服務
原廠技術服務
產品說明會
教育訓練
教學範例檔
永久授權
目前庫存
中文型錄
安裝序號
原廠光碟
合法保證
原廠手冊
電子英文手冊
Overview

In social research and other fields, research data often have a hierarchical structure. That is, the individual subjects of study may be classified or arranged in groups which themselves have qualities that influence the study. In this case, the individuals can be seen as level-1 units of study, and the groups into which they are arranged are level-2 units. This may be extended further, with level-2 units organized into yet another set of units at a third level. Examples of this abound in areas such as education (students at level 1, schools at level 2, and school districts at level 3) and sociology (individuals at level 1, neighborhoods at level 2). It is clear that the analysis of such data requires specialized software. Hierarchical linear and nonlinear models (also called multilevel models) have been developed to allow for the study of relationships at any level in a single analysis, while not ignoring the variability associated with each level of the hierarchy.

The HLM program can fit models to outcome variables that generate a linear model with explanatory variables that account for variations at each level, utilizing variables specified at each level. HLM not only estimates model coefficients at each level, but it also predicts the random effects associated with each sampling unit at every level. While commonly used in education research due to the prevalence of hierarchical structures in data from this field, it is suitable for use with data from any research field that have a hierarchical structure. This includes longitudinal analysis, in which an individual's repeated measurements can be nested within the individuals being studied. In addition, although the examples above implies that members of this hierarchy at any of the levels are nested exclusively within a member at a higher level, HLM can also provide for a situation where membership is not necessarily "nested", but "crossed", as is the case when a student may have been a member of various classrooms during the duration of a study period.

The HLM program allows for continuous, count, ordinal, and nominal outcome variables and assumes a functional relationship between the expectation of the outcome and a linear combination of a set of explanatory variables. This relationship is defined by a suitable link function, for example, the identity link (continuous outcomes) or logit link (binary outcomes).